

Cell Membrane

• Presents a hydrophobic barrier to biologically-relevant compounds

Cell Membrane

- Presents a hydrophobic barrier to biologically-relevant compounds
- Two ways to cross the membrane:

Cell Membrane

- Presents a hydrophobic barrier to biologically-relevant compounds
- Two ways to cross the membrane:
 - "dissolve" in the hydrophobic barrier and go through
 - cross with the aid of a transmembrane protein

Molecules that can cross the hydrophobic barrier easily:

- Gases (O₂, CO₂, N₂)
- Small polar molecules (e.g., ethanol)

Molecules that can cross the hydrophobic barrier easily:

- Gases (O₂, CO₂, N₂)
- Small polar molecules (e.g., ethanol)
- Small nonpolar molecules (*e.g.*, diethylurea)

Diffusion

- Refers to the thermally-driven (*i.e.*, no energy input) movement of molecules from a region of HIGH concentration to LOW concentration
- Rate of crossing the membrane depends on frequency of collisions with membrane, which is proportional to concentration

Slight complication: We don't know C_{membrane}

Partition coefficient, K

• Relates membrane concentration to known aqueous concentration

Partition coefficient, K

- Relates membrane concentration to known aqueous concentration
- K=C_{oil}/C_{water}
 - K>1: C_{membrane} > C_{water} (hydrophobic)
 - K<1: C_{membrane} < C_{water} (hydrophilic)
 - Charged compounds: K=0

• Predicts hydrophobic (K>1) molecules should cross better TRUE

Classes of Transport Proteins (*substrates travel down concentration gradient)

- Transporters (10²–10⁴/sec)*
 - Uniports
 - Symports/cotransporters
 - Antiports/exchangers

Classes of Transport Proteins (*substrates travel down concentration gradient)

- Transporters (10²-10⁴/sec)*
 - Uniports
 - Symports/cotransporters
 - Antiports/exchangers
- Channels (10⁸/sec)*
- ATP-driven pumps (10²/sec)

Common Properties

• Substrate specificity

Common Properties

- Substrate specificity
- Saturation

Uniporters aka "facilitated diffusion"

• Allow movement of molecules down concentration gradient

Uniporters aka "facilitated diffusion"

- Allow movement of molecules down concentration gradient
- Is bi-directional: direction of transport depends upon the gradient

- Couples the downward movement of one substrate to the (possible) uphill movement of another
- Almost always uses Na⁺ as the "downhill" substrate ([Na⁺]_{out}>[Na⁺]_{in})

- Couples the downward movement of one substrate to the (possible) uphill movement of another
- Almost always uses Na⁺ as the "downhill" substrate ([Na⁺]_{out}>[Na⁺]_{in})
- Also use the alternating access process
- Sometimes referred to as "secondary active transport"

SGLT Family TABLE 1. SGLT substrates and expression in the human body Gene Substrate Substrates and expression in the human body							
Cotransporter	, 0	0.5	· · · · · · · · · ·				
SGLT2 (SLC5A2)	Glucose	6	Kidney, brain, liver, thyroid, muscle, heart				
Cotransporter		NI					
SGLT3 (SLC5A4)	Glucose	20	Intestine, testis, uterus, lung, brain, thyroid				
Glucosensor		NI					
SGLT4 (SLC5A9)	Glucose, mannose	2	Intestine, kidney, liver, brain, lung, trachea, uterus, pancreas				
Cotransporter		0.15					
SGL15 (SLC5A10)	Glucose	ND	Kidney cortex				
Cotransporter	Galactose	ND					

Structure of vSGLT

- Prokaryotic homolog from *Vibrio* parahaemolyctus
- Member of the so-called prokaryotic LeuT family- a family of Na⁺dependent cotransporters

5 | Chem. Commun., 2009, 3677-3692

This journal is © The Royal Society of Chemistr

Antiports/Exchangers

• Similar to symports, but now the two substrates move in opposite directions

Antiports/Exchangers

- Similar to symports, but now the two substrates move in opposite directions
- Inward movement of one substrate drives the outward movement of the other

Antiports/Exchangers

- Similar to symports, but now the two substrates move in opposite directions
- Inward movement of one substrate drives the outward movement of the other
- Also use alternating access model

Antiports/Exchangers

- Na⁺/Ca⁺⁺ exchanger
 - Helps to reduce intracellular Ca⁺⁺ in cardiac myocytes to lead to relaxation

Antiports/Exchangers

- Na⁺/Ca⁺⁺ exchanger
 - Helps to reduce intracellular Ca⁺⁺ in cardiac myocytes to lead to relaxation
- Na⁺/H⁺ antiporter
 - Help maintain intracellular pH and volume homeostasis

- Na⁺/Ca⁺⁺ exchanger
 - Helps to reduce intracellular Ca⁺⁺ in cardiac myocytes to lead to relaxation
- Na⁺/H⁺ antiporter
 - Help maintain intracellular pH and volume homeostasis
- Cl⁻/HCO₃⁻ exchanger
 - Involved in transport of CO₂ from tissues to blood and to lung

ATP-driven Pumps

- Three classes
 - P-class pumps
 - ions; involves E~P intermediate

P-class Pumps

- All involve E~P intermediate
- Examples
 - Na⁺/K⁺ ATPase: set up ion gradients
 - Ca⁺⁺ ATPase: maintain low cytosolic [Ca⁺⁺]
 - H⁺/K⁺ ATPase: acidify stomach
 - Menkes ATPase: pumps Cu⁺ out of cells and into intracellular compartments

Ca++ Pump aka SERCA

- SERCA: sarco/endoplasmic reticulum Ca⁺⁺ ATPase
- Role is to remove Ca⁺⁺ from the cytoplasm by pumping into SR/ER

- SERCA: sarco/endoplasmic reticulum Ca⁺⁺ ATPase
- Role is to remove Ca⁺⁺ from the cytoplasm by pumping into SR/ER
- The crystal structure of the SERCA pump has been determined in several different conformations, allowing one to examine various stages of the catalytic cycle

F- & V-class pumps

• F-class

- Bacteria, mitochondria, chloroplasts
- Normally run "backward"
 - Make ATP from downward movement of H⁺
- V-class
 - Used to acidify internal compartments such as lysosomes

ABC Superfamily

• > 100 members

ABC Superfamily > 100 members Each type is selective for a particular substrate or class of compounds

BC Protein	Psuedonym	Ligand(s)/Function	Associated Disease(s)
ABC1	ABCA1	Cholesterol	Tangier disease
ABCR	ABCA4	Retinal	Various eye diseases
FAP1/2	ABCB2/B3	Peptides	Bare lymphocyte syndrome
ABC7	ABCB7	Iron	Anemia and XLSA
MRP6	ABCC6	?	Pseudoxanthoma elasticum
ALD	ABCD1	vlcFA	Adrenoleukodystrophy
Sterolin1/2	ABCG5/G8	Sterols	Sitosterolemia
PGY3/MDR3	ABCB4	Phosphatidylcholine	Liver disease: PFIC3, OC
BSEP/SPGP	ABCB11	Bile acids	Liver disease: PFIC2
MRP2	ABCC2	Conjugated bilirubin	Liver disease: D-J syndrome
MDR1	ABCB1	Hydrophobic drugs	Failure of chemotherapy
BCRP/MXR	ABCG2	Hydrophobic drugs	
MRP1	ABCC1	Conjugated drugs	
MRP4	ABCC4	Conjugated nucleosides	
		Atypical ABC proteins	
CFTR SUR SMC1-6 Rad50 Elf1p	ABCC7 ABCC8	Chloride ion channel Regulation of K _{IR} channel Chromosome maintenance DNA, telomere repair mRNA trafficking	Cystic fibrosis PHHI

- Proteins have two transmembrane domains and two nucleotide binding domains
- ATP binding and hydrolysis drive the pumping

ABC Superfamily: CFTR

• CFTR: Cystic Fibrosis Transmembrane Regulator

ABC Superfamily: CFTR

- CFTR: Cystic Fibrosis Transmembrane Regulator
- cAMP-dependent Cl⁻ channel

- CFTR: Cystic Fibrosis Transmembrane Regulator
- cAMP-dependent Cl⁻ channel
- Movement of Cl⁻ helps move H₂O across epithelial cells

